

Thermodynamics Guide

Definitions, guides, and tips

Definitions

What each thermodynamic value means

Enthalpy of Formation

Definition

The enthalpy required or released during formation of a molecule from its elements.

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$$
 $\Delta H_f^o(H_2O)$

Sign: ΔH^{o}_{f} can be positive or negative.

Direction: From elements to product.

Phase: The phase of the product being formed can be anything, but the elemental starting materials must be in their elemental standard phase.

- RC&O Appendix 1 collects these values.
- Limited by what values are experimentally available.
- Knowing the elemental form of each atom is helpful.

Ionization Enthalpy (IE)

Definition

The enthalpy required to remove one electron from an atom or ion.

$$Li(g) \rightarrow Li^{+}(g) + e^{-}$$
 IE(Li)

Sign: IE is always positive — removing electrons from proximity of nucleus requires enthalpy input

Direction: IE goes from atom to ion/electron pair.

Phase: IE is a gas phase property. Reactants and products must be gas phase.

- Phase descriptors are not generally given to an electron.
- Ionization energy is taken to be identical to ionization enthalpy.
- The first IE of Li(g) is shown above. A second, third, or higher IE can also be determined. Removing each additional electron costs even more enthalpy.

Electron Affinity (EA)

Definition

How much enthalpy is gained when an electron is added to an atom or ion. (How much an atom "wants" an electron).

$$Cl(g) + e^- \rightarrow Cl^-(g)$$
 EA(Cl)

Sign: EA is always positive, but the **enthalpy is negative**: $\Delta H^{o}_{rxn} < 0$. This is because of how we describe the property as an "affinity". Adding electrons is exothermic, so <u>usually a negative sign needs to be added to the provided value!</u>

Direction: EA goes from atom/electron pair to an anion.

Phase: EA is a gas phase property. Reactants and products must be gas phase.

- Phase descriptors are not generally given to an electron.
- The first EA of Cl(g) is shown above. A second, third, or higher EA can also be determined.

Bond Dissociation Enthalpy

Definition

The enthalpy required to break a bond homolytically.

$$Br-Br(g) \rightarrow 2Br(g)$$
 BDE

Sign: BDE is always positive — breaking bonds requires enthalpy input

Direction: BDE is the breaking of bonds.

$$Cl_2(g) \rightarrow 2Cl(g)$$
 BDE (positive number)

$$2Cl(g) \rightarrow Cl_2(g)$$
 -BDE (reverse reaction gets a negative sign)

Phase: Not always explicitly given. Usually gas phase.

BDE Cases with Multiple Bonds

Is each bond different?

Bromine has a single BDE:

$$Br-Br(g) \rightarrow 2Br(g)$$

Water has two bonds, each with different energy:

$$H_2O(g) \rightarrow OH(g) + H(g)$$
 BDE = 497 kJ/mol
OH(g) $\rightarrow O(g) + H(g)$ BDE = 426 kJ/mol

BDE(O-H) for water = 462 kJ/mol (average of first and second BDE)

Because the values are averages, can use as a good approximation for any molecule.

Methane, ethane, propane: all made of sp3 C-H bonds, all have: BDE(C–H) = 411 kJ/mol (per C–H bond)

Lattice Enthalpy

Definition

Enthalpy released when gas phase ions come together to form a solid ionic lattice

$$Li^{+}(g) + Br^{-}(g) \rightarrow LiBr(s)$$
 $\Delta H^{o}_{lattice}$

Sign: ΔH^o_{latt} is always negative (exothermic to form a lattice). Gas phase ions are generally quite unstable.

Direction: From gas phase ions to solid lattice.

Phase: Gas phase ion reactants moving to solid phase salt product.

- Very often required when dealing with thermodynamics of salts.
- $\Delta H^{o}_{lattice}$ can be estimated using the Born-Lande equation.

$$\Delta H^{\circ}_{lattice} = -\frac{N_A \cdot A \cdot z^+ \cdot z^- \cdot e^2}{4\pi\varepsilon_0 r_0} (1 - \frac{1}{n})$$

Enthalpy of Vaporization

Definition

Enthalpy change when a molecule moves from liquid phase to gas phase

$$Br_2(1) \rightarrow Br_2(g)$$
 $\Delta H^o_{vaporization}$

Sign: Can be positive or negative.

Direction: From liquid phase molecule to gas phase molecule.

Phase: Liquid phase reactants to gas phase product.

Notes:

Does not involve covalent bond breaking.

Enthalpy of Sublimation

Definition

Enthalpy change when a molecule moves from solid phase to gas phase

$$Br_2(s) \rightarrow Br_2(g)$$
 $\Delta H^o_{sublimation}$

Sign: Can be positive or negative.

Direction: From solid phase molecule to gas phase molecule.

Phase: Solid phase reactants to gas phase product.

Notes:

No covalent bonds breaking.

Enthalpy of Fusion

Definition

Enthalpy change when a molecule moves from solid phase to liquid phase

$$I_2(s) \rightarrow I_2(l)$$
 ΔH^{o}_{fusion}

Sign: Can be positive or negative.

Direction: From solid phase molecule to liquid phase molecule.

Phase: Solid phase reactants to liquid phase product.

Notes:

No covalent bonds breaking.

Enthalpy of Atomization

Definition

Enthalpy required to generate 1 mole of gas phase atoms from the elemental form

$$Li(s) \rightarrow Li(g)$$
 ΔH^{o}_{atom}
 $^{1}/_{2}O_{2}(g) \rightarrow O(g)$ ΔH^{o}_{atom}

Sign: ΔH^o_{atom} is almost always positive (endothermic to break bonds and form gas phase atoms). $\Delta H^o_{atom} = 0$ for noble gases (they are already atoms!).

Direction: Atoms are the product.

Phase: Resulting atoms are gas phase, but starting material takes the phase of the subject elemental form.

- Involves bond breaking. Either metallic bonds or covalent bonds are broken.
- Often the same as other thermodynamic values:

$$Li(s) \rightarrow Li(g)$$
 $\Delta H^{o}_{atom} = \Delta H^{o}_{sublimation}$
 $O_{2}(g) \rightarrow 2O(g)$ $2 \cdot \Delta H^{o}_{atom} = BDE(O_{2})$

Enthalpy of Combustion

Definition

Enthalpy change when a molecule reacts with O_2 to form CO_2 and H_2O

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(1)$$
 $\Delta H^o_{combustion}$

Sign: Positive or negative, but usually hydrocarbon combustion is exothermic.

Direction: With CO_2 and H_2O as products.

Phase: Variable — depending on the conditions of measurement. Typically, standard phase species will be used (especially liquid water and gaseous CO₂). Combustion reactant (methane in example above) is more often in gas phase, even if that is not the standard phase (i.e. octane gas).

Notes:

• Enthalpy of combustion values are not always available. This reaction type is a common subject of predictive questions: i.e. "predict $\Delta H^o_{combustion}$ based on enthalpy of formation values."

Guides

How to use thermodynamic values to solve problems

Enthalpy of Formation

Use enthalpy of formation to calculate enthalpy of a reaction:

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^o_{rxn} = \Delta H^o_f(CO_2) + (-\Delta H^o_f(CO))$

- 1. Is an enthalpy of formation value available for each reactant and product?
- 2. Use the following expression, derived from a sum of ΔH^{o}_{f} reactions.

 Σ (Enthalpy or products) – Σ (enthalpy of reactants) = ΔH^{o}_{rxn}

$$\begin{array}{ll} CO(g) \rightarrow C(s) + \frac{1}{2}O_{2}(g) & -\Delta H^{o}_{f}(CO) \\ \underline{O_{2}(g) + C(s)} \rightarrow \underline{CO_{2}(g)} & \Delta H^{o}_{\underline{f}}(\underline{CO_{2}}) \\ CO(g) + \frac{1}{2}O_{2}(g) \rightarrow \underline{CO_{2}(g)} & \Delta H^{o}_{rxn} = \Delta H^{o}_{f}(CO_{2}) + (-\Delta H^{o}_{f}(CO)) \end{array}$$

In cartoon form:

(1) Break up CO into elements ($-\Delta H^{\circ}_{f}$). (2) combine elements to form CO₂.

Bond Dissociation Enthalpy

Using BDE to calculate enthalpy of reaction:

1. "Blow up" the reactants into individual atoms!

$$2CH_4(g) \rightarrow 8H(g) + 2C(g)$$

2. Assemble the free atoms into the product structure.

$$8H(g) + 2C(g) \rightarrow H_2C = CH_2 + 2H_2(g)$$

- 3. Net reaction: $2CH_4(g) \rightarrow H_2C=CH_2 + 2H_2(g)$
 - Good for covalent molecules (bonds required).
 - ΔH°_{rxn} = BDE(reactants) BDE(products)

Lattice Enthalpy

Use lattice enthalpy to calculate enthalpy of a reaction: $Ag(s) + 1/2Cl_2(g) \rightarrow AgCl(s)$

- A thermochemical cycle involving a salt will often require lattice enthalpy.
- The lattice enthalpy generates gas phase ions, which are readily converted to gas phase atoms using ionization enthalpy or electron affinity values.
- Gas phase atoms can be related to almost anything using enthalpy of atomization or bond dissociation enthalpy values.
- Once a complete Born-Haber cycle is constructed, write an equation to solve for the unknown value.
- Note that $\Delta H^{o}_{rxn} = \Delta H^{o}_{f}(AgCl(s))$ in this special case.

Lattice Enthalpy

Use lattice enthalpy to calculate enthalpy of a reaction: $Ag(s) + 1/2Cl_2(g) \rightarrow AgCl(s)$

- Signs: The Born-Haber diagram should be drawn such that moving from a lower energy level to a higher energy level will have a positive sign.
- Arrowheads indicate the direction of the reaction (which may be the opposite direction from thermodynamic value, leading to a sign change).
- An equation solving for ΔH°_{rxn} is shown below. The equation is a summation (all numbers added) but some of the values will have negative signs in front of them.

$$0 = -\Delta H^{o}_{rxn} + \Delta H^{o}_{atom} + IE + BDE + (EA) + \Delta H^{o}_{latt}$$

$$\Delta H^{o}_{rxn} = \Delta H^{o}_{atom} + IE + BDE + (EA) + \Delta H^{o}_{latt}$$

